华体会最新手机登录地址专注于废气处理行业,分析各行业废气污染因子,解决工业废气治理难题,让废气达标排放,通过环评!
  咨询电话:13828700816

酸洗槽

PID控制常用的参数整定方法

来源:华体会官方网页登录入口    发布时间:2024-04-06 09:53:51

  在过程控制中,按偏差的比例(P)、积分(I)和微分(D)来控制的PID控制器是应用最为广泛的一种自动控制器。它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定最简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。

  因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。

  但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。现在知道这只是最简单的闭环控制算法。

  对偏差信号进行比例、积分和微分运算变换后形成一种控制规律。“利用偏差,纠正偏差”。

  比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;

  积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;

  微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没形成之前,已被微分调节作用消除,因此能改善系统的动态性能。但是微分对噪声干扰有放大作用,加强微分对系统抗干扰不利。积分和微分都不能单独起作用,必须与比例控制配合。

  (1)比例控制规律P:采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现。它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一些范围内有余差的场合。如:金彪公用工程部下设的水泵房冷、热水池水位控制;油泵房中间油罐油位控制等。

  (2)比例积分控制规律(PI):在工程中比例积分控制规律是应用最广泛的一种控制规律。积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。如:在主线号枪的重油流量控制管理系统;油泵房供油管流量控制管理系统;退火窑各区温度调节系统等。

  (3)比例微分控制规律(PD):微分具有超前作用,对于具有容量滞后的控制通道,引入微分参与控制,在微分项设置得当的情况下,对于提高系统的动态性能指标,有着显著效果。因此,对于控制通道的时间常数或容量滞后较大的场合,为了更好的提高系统的稳定性,减小动态偏差等可选用比例微分控制规律。如:加热型温度控制、成分控制。需要说明一点,对那些纯滞后较大的区域里,微分项是无能为力,而在测量信号有噪声或周期性振动的系统,则也不宜采用微分控制。如:大窑玻璃液位的控制。

  (4)例积分微分控制规律(PID):PID控制规律是一种较理想的控制规律,它在比例的基础上引入积分,可以消除余差,再加入微分作用,又能提高系统的稳定性。它适用于控制通道时间常数或容量滞后较大、控制要求比较高的场合。如温度控制、成分控制等。

  鉴于D规律的作用,我们还一定要了解时间滞后的概念,时间滞后包括容量滞后与纯滞后。其中容量滞后通常又包括:测量滞后和传送滞后。测量滞后是检测元件在检测时要建立一种平衡,如热电偶、热电阻、压力等响应较慢产生的一种滞后。而传送滞后则是在传感器、变送器、执行机构等设备产生的一种控制滞后。纯滞后是相对于测量滞后的,在工业上,大多的纯滞后是由于物料传输所致,如:大窑玻璃液位,在投料机动作到核子液位仪检测需要很长的一段时间。

  总之,控制规律的选用要根据过程特性和工艺技术要求来选取,绝不是说PID控制规律在任何情况下都具有较好的控制性能,不分场合都采用是不明智的。如果这样做,只会给其它工作增加复杂性,并给参数整定带来困难。当采用PID控制器还达不到工艺要求,则需要仔细考虑其它的控制方案。如串级控制、前馈控制、大滞后控制等。

  Kp,Ti,Td三个参数的设定是PID控制算法的核心问题。一般说来编程时只能设定他们的大概数值,并在系统运行时通过反复调试来确定最佳值。因此调试阶段程序必需得能随时修改和记忆这三个参数。

  在某些应用场合,比如通用仪表行业,系统的工作对象是不确定的,不同的对象就得采用不一样的参数值,没法为用户设定参数,就引入参数自整定的概念。实质就是在首次使用时,通过N次测量为新的工作对象寻找一套参数,并记忆下来作为以后工作的依据。具体的整定方法有三种:临界比例度法、衰减曲线、临界比例度法(Ziegler-Nichols)

  1.1 在纯比例作用下,逐渐增加增益至产生等副震荡,根据临界增益和临界周期参数得出PID控制器参数,步骤如下:

  (1)将纯比例控制器接入到闭环控制管理系统中(设置控制器参数积分时间常数Ti =∞,实际微分时间常数Td =0)。

  (2)控制器比例增益K设置为最小,加入阶跃扰动(一般是改变控制器的给定值),观察被调量的阶跃响应曲线)由小到大改变比例增益K,直到闭环系统出现振荡。

  (4)系统出现持续等幅振荡时,此时的增益为临界增益(Ku),振荡周期(波峰间的时间)为临界周期(Tu)。

  (1)在采用这种方法获取等幅振荡曲线时,应使控制管理系统工作在线性区,不要使控制阀出现开、关的极端状态,否则得到的持续振荡曲线可能是“极限循环”,从线性系统概念上说系统早已处于发散振荡了。

  (2)由于被控对象特性的不同,按上表求得的控制器参数不一定都能获得满意的结果。对于无自平衡特性的对象,用临界比例度法求得的控制器参数往住使系统响应的衰减率偏大(ψ>0.75 )。而对于有自平衡特性的高阶等容对象,用此法整定控制器参数时系统响应衰减率大多偏小(ψ<0.75 )。为此,上述求得的控制器参数,应针对具体系统在实际运行过程中进行在线) 临界比例度法适用于临界振幅不大、振荡周期较长的过程控制管理系统,但有些系统从安全性考虑不允许进行稳定边界试验,如锅炉汽包水位控制管理系统。还有某些时间常数较大的单容对象,用纯比例控制时系统始终是稳定的,对这些系统也是没办法用临界比例度法来进行参数整定的。

  (4)只适用于二阶以上的高阶对象,或一阶加纯滞后的对象,否则,在纯比例控制情况下,系统不可能会出现等幅振荡。

  1.3 若求出被控对象的静态放大倍数KP=△y/△u ,则增益乘积KpKu可视为系统的最大开环增益。通常认为Ziegler-Nichols闭环试验整定法的适合使用的范围为:

  (1) 当KpKu>

  20时,应采用更复杂的控制算法,以求较好的调节效果。

  kpku

  <2时,在对控制精度要求不高的场合仍可使用pid控制器,但需要对表1进行修正。在这种情况下,建议采用smith预估控制和imc控制策略。

  (4)当KpKu

  <1.5时,在对控制精度要求不高的场合仍可使用pi控制器,在这种情况下,微分作用意义不大。

  <2、衰减曲线法

  衰减曲线法与临界比例度法不同的是,闭环设定值扰动试验采用衰减振荡(通常为4:1或10:l),然后利用衰减振荡的试验数据,根据经验公式求取控制器的整定参数。整定步骤如下:

  <(1)在纯比例控制器下,置比例增益K为较小值,并将系统投入运行。

  (2)系统稳定后,作设定值阶跃扰动,观察系统的响应,若系统响应衰减太快,则减小比例增益K;反之,应增大比例增益K。直到系统出现如图1(a)所示的4:1衰减振荡过程,记下此时的比例增益Ks及和振荡周期Ts数值。

  (3)利用Ks和Ts值,按表2给出的经验公式,计算出控制器的参数整定值。

  采用衰减曲线)加给定干扰不能太大,要根据相关生产操作要求来定,一般在5%左右,也有例外的情况。

  (2)必须在工艺参数稳定的情况下才能加给定干扰,否则得不到正确的整定参数。

  (3)对于反应快的系统,如流量、管道压力和小容量的液位调节等,要得到严格的4:1衰减曲线较困难,一般以被调参数来回波动两次达到稳定,就近似地认为达到4:1衰减过程了。

  (4)投运时,先将K放在较小的数值,把Ti减少到整定值,把Td逐步放大到整定值,然后把K拉到整定值(如果在K=整定值的条件下很快地把Td放到整定值,控制器的输出会剧烈变化)。

  使PID为纯比例调节,输入设定为系统允许最大值的60%~70%,由0逐渐加大比例增益至系统出现振荡;再反过来,从此时的比例增益逐渐减小至系统振荡消失,记录此时的比例增益,设定PID的比例增益P为当前值的60%~70%。

  比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti至系统出现振荡,之后在反过来,逐渐加大Ti至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。

  积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。

  (a)纯比例作用下,把比例度从较大数值逐渐往下降,至开始产生周期振荡(测量值以给定值为中心作有规则的振荡),在产生周期性振荡的情况下,把此比例度逐渐加宽直至系统充分稳定。

  (b)接下来把积分时间逐渐缩短至产生振荡,此时表示积分时间过短,应把积分时间稍加延长,直至振荡停止。

  (b)加大微分时间使振荡停止,接着把比例度调得稍小一些,使振荡又产生,加大微分时间,使振荡再停止,来回这样操作,直至虽加大微分时间,但不能使振荡停止,求得微分时间的最佳值,此时把比例度调得稍大一些直至振荡停止。

  (c)把积分时间调成和微分时间相同的数值,如果又产生振荡则加大积分时间直至振荡停止。

  另一种方法是先从表列范围内取Ti的某个数值,若需要微分,则取Td=(1/3~1/4)Ti,然后对δ进行试凑,也能较快地达到一定的要求。实践证明,在一些范围内适当地组合δ和Ti的数值,能够获得同样衰减比的曲线,就是说,δ的减少,可以用增加Ti的办法来补偿,而基本上不影响调节过程的质量。所以,这样的一种情况,先确定Ti、Td再确定δ的顺序也能的。而且可能更快些。如果曲线仍然不理想,可用Ti、Td再加以适当调整。

  以串级调节系统为例来说明复杂调节系统的参数整定方法。由于串级调节系统中,有主、副两组参数,各通道及回路间存在着相互联系和影响。改变主、副回路的任一参数,对总系统都有影响。特别是主、副对象时间常数相差不大时,动态联系密切,整定参数的工作尤其困难。

  在整定参数前,先要明确串级调节系统的设计目的。如果主要是保证主参数的调节质量,对副参数要求不高,则整定工作就非常容易;如果主、副参数都要求高,整定工作就很复杂。下面介绍“先副后主”两步参数整定法。

  第一步:在工况稳定情况下,将主回路闭合,把主控制器比例度放在100%,积分时间放在最大,微分时间放在零。用4:1衰减曲线整定副回路,求出副回路的比例增益K2s和振荡周期T2s。

  第二步:把副回路看成是主回路的一个环节,使用4:1衰减曲线法整定主回路,求得主控制器K1s和T1s。

  根据K1s、K2s、T1s、T2s按表2经验公式算出串级调节系统主、副回路参数。先放上副回路参数,再放上主回路参数,如果得到满意的过渡过程,则整定工作完毕。否则可进行适当调整。

  如果主、副对象时间常数相差不大,按4:1衰减曲线法整定,也许会出现“共振”危险,这时,可适当减小副回路比例度或积分时间,以达到减少副回路振荡周期的目的。同理,加大主回路比例度或积分时间,以期增大主回路振荡周期,使主、副回路振荡周期之比加大,避免“共振”。这样做的结果会降低调节质量。

  如果主、副对象特性太相近,则说明确定的方案欠妥当,就不能完全依靠参数整定来提高调节质量了。

  一是利用数字PID控制算法调节直流电机的速度,方案是采用光电开关来获得电机的转动产生的脉冲信号,单片机(MSP430G2553)经过测量脉冲信号的频率来计算电机的转速(具体测量频率的算法是采取直接测量法,定时1s测量脉冲有多少个,本身的测量误差可以有0.5转加减),测量的转速同给定的转速进行比较产生误差信号,来产生控制信号,控制信号是通过PWM调整占空比也就是调整输出模拟电压来控制的(相当于1位的DA,如果用10位的DA来进行模拟调整呢?效果会不会好很多?),这个实验控制能力有一定的范围,只能在30转/秒和150转/秒之间来控制,当给定值(程序中给定的速度)高于150时,实际速度只能保持在150转,这也就是此系统的最大控制能力,当给定值低于30转时,直流电机转轴实际是不转动的,但由于误差值过大,转速会迅速变高,然后又会停止转动,就这样循环往复,不能够达到控制效果。

  根据实测,转速稳态精度在正负3转以内,控制时间为4到5秒。实验只进行到这种程度,思考和分析也只停留在这种深度。

  二是利用数字PID控制算法调节直流减速电机的位置,方案是采用与电机同轴转动的精密电位器来测量电机转动的位置和角度,经过测量得到的角度和位置与给定的位置做比较产生误差信号,然后位置误差信号通过一定关系(此关系纯属根据想象和实验现象来拟定和改善的)转换成PWM信号,作为控制信号的PWM信号是先产生对直流减速电机的模拟电压U,U来控制直流减速电机的力矩(不太清楚),力矩产生加速度,加速度产生速度,速度改变位置,输出量是位置信号,所以之间应该对直流减速电机进行系统建模分析,仿真出直流减速电机的近似系统传递函数,然后根据此函数便可以对PID的参数进行整定了。

  关键字:引用地址:PID控制常用的参数整定方法上一篇:工业运动控制器的原理及控制形式、优点

  变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器异常工作的现象,因此,必须对相关的参数进行正确的设定。 1.控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度进行静态或动态辨识。 2.最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 3.最高运行频率:一般的变频器最大频率到60Hz,有些甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 4.

  传统的PID调节器具有结构相对比较简单、调整方便和参数整定与工程指标联系密切的优点,在过程控制中获得了广泛的应用,但算法参数整定困难,且参数不具有自适应能力。很多学者提出了改进型PID控制算法,赵建华、沈永良等人 推导出一种自适应PID控制算法,仿真根据结果得出控制算法的有效性。神经元作为构成神经网络的基本单位,具有自学习和自适应能力,结合神经元构成的控制管理系统算法简单、易实现。将神经元技术与传统PID控制相结合,则可以在某些特定的程度上解决传统PID控制器不易进行在线实时参数整定的问题 。 但是当前神经元PID系统中,对于最敏感的系数之一的增益系数只在初始时设定,不具备在线调整功能,学习速率一般是通过大量的仿真和实验得来,在控制过程中保持不

  1、引言 现场总线技术的发展使得控制管理系统在由封闭走向开放的进程中迈进了一大步。以现场总线为基础的开放式控制系统开始步入封闭的DCS系统,成为过程控制的发展趋势。FF(基金会现场总线)现场总线是一种全数字、串行、双向通信网络,同时也是一种专门针对过程自动化领域的应用而设计的现场总线。 本文以在中科院沈阳自动化研究所设计的基于FF现场总线的网络化测控实验平台上,设计了双容水箱的液位反馈控制回路,并结合具体被控对象提出了将PID控制算法应用到FF现场总线系统的可行性方案,既在OPC服务器MicroCyber.FFServer.1的基础上实现了基于OPC技术的PID控制算法。实验表明,该方案控制效果更好的发挥了现场总线与PID

  1 引言 工业现场中大部分的控制管理系统的控制器是PID控制器,其PID参数的整定需要一定的控制理论知识和丰富的经验。对于现场缺乏自动化技术人员的企业,其PID参数往往远离最优值。PID参数的优劣直接影响着生产质量。为了改变生产中的这种不利状况,开发一个远程PID参数整定系统,显得很必要。在实验室中并不具备灵活的可变的控制对象,故本系统的开发选用了NI虚拟仪器LabVIEW软件构建控制对象。在实验室中,以构建一个PID控制器的远程监控系统为例,在LabVIEW上的实验对象进行仿真实验,研究控制效果。 2 远程监控系统简介 系统中PID控制器作为下位机,并通过其自带的串口通信功能连接到上位机,即工控计算机的COM口

  如果你想要制作一个遵循黑线行动的酷机器人。大概只需要在 2 小时内学习并制作就能完成带有 D 控制器的线跟随器机器人。 大多数漫游车自主机器人需要的一项功能是线路跟踪。该项目的目的是构建一个线跟随机器人,并以一种有趣的方式开始有效学习 PID 控制器。 构建 机器人与两个、Rosbot 底板和一个 5 通道一起正常工作。与别的产品不同,您无需购买额外的 H 桥或各种组件,因为 Rosbot 具有内置的 2x H 桥双驱动器。只需将电机连接到 Rosbot 基板,它将提供比 Uno 更多的电力。 机器人框架: KitnBot 阳极铝底盘 酷酷且坚固的底盘,带有大量安装孔(4.8 毫米乐高机械组),您绝对

  【导读】分享S7-1200中怎么来实现PID控制。 概述 【一】PID控制 PID功能用于对闭环过程来控制。PID控制适用于温度、压力和流量等物理量,是工业现场中应用最为广泛的一种控制方式,其原理是对被控对象设定一个给定值然后将实际值测量出来,并与给定值比较,将其差值送入PID控制器,PID控制器按照一定的运算规律,计算出结果,即为输出值,送到执行器进行调节,其中的P、I和D指的是比例、积分和微分,是一种闭环控制算法。通过这一些参数,可以使被控对象追随给定值变化并使系统达到稳定,自动消除各种干扰对控制过程的影响。 【一】S7-1200的PID控制 S7-1200 CPU提供了PID控制器回路数量受到CPU的工作内存及支持D

  #include #include #include unsigned int cap_tar,cap_first,cap_last,time,pluse,flag=0,temp1; float speed,Uk,vis=0,temp2=0; /******************************************* 函数名称:定时器中断服务函数 功 能:用于捕捉传感器的脉冲信号 参 数:无 返回值 :无 ********************************************/ #pragma vector=TIMERA0_VECTOR __interrupt void timerA0(void

  0 引言 PID控制是最常的控制策略,在工业过程控制中90%以上的控制回路具有PID结构。PID控制之所以被大范围的应用主要是因为它算法简单,在实际中容易被理解和实现,而且许多高级控制都以PID控制为基础。但是由于环境的变化,使被控对象具有时变性,参数经过一段时间以后会 出现性能欠佳、适应性变差、控制效果下降等情况。因此,寻求参数自动整定技术,以适应复杂工况及高性能指标的控制要求,是实现节能优化控制的重要手段,具有重大的工程实践意义。 1 自整定过程原理 本文主要研究了一种手持式的PID参数整定仪器,此整定仪具有整定单变量和双变量的双重功能,控制管理系统主要是采用低能耗的MSP430微控制器,软件部分采用的软件开发平台是IAR MSP

  仪的实现 /

  仿真 (张袅娜 冯雷)

  (原书第10版) (法里德·高那菲(Farid Golnaraghi) etc.)

  (原书第10版) (法里德·高那菲(Farid Golnaraghi) etc.)

  2024年4月3日 – 专注于推动行业创新的知名新品引入 (NPI) 代理商™贸泽电子 (Mouser Electronics) 紧跟潮流,通过内容丰富的沉浸式 ...

  4月3日消息,据新闻媒体报道,由于Exynos效能始终和高通有差距,三星将继续采用双处理器策略,高通骁龙处理器仍将在S25系列上出现。此前有报道 ...

  AP2905 是一款高效率同步降压稳压器,在 6 V ~ 40 V 宽输入范围内可提供 0 7 A 输出电流。固定5 V输出版本可节省 2个分压电阻 ...

  PN8370M+PN8306M小体积5v2a充电器方案因其节省外围、稳定性很高、功能齐全、深受工程师青睐,在市场得到了广泛应用。PN8370M是一款高性能的原 ...

  PN8611集成超低待机功耗原边控制器、FB下偏电阻和电容、VDD供电二极管、CS电阻及650V高雪崩能力智能功率MOSFET,用于高性能、外围元器件超 ...

  FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云: